企业应用架构模式读书笔记(二) Domain Model

这个笔记主要记录一下领域模型。
第一次听说领域模型是在JavaEye的一个帖子上。 也就是那个经典的robbin总结。那时候看是一头雾水,根本不知所云,虽然当时已经是大三下半学期,开发了学院的那个CMS。从IBM回来以后,开始着手重新启动APIS的开发,同时引入了Spring框架。一些项目上的心得,再加上对APIS设计上的疑惑加在一起,重新再看那篇帖子,真是豁然开朗啊。同时也去了Martin Fowler的Bliki上看了那篇批判贫血模型的blog
其实所谓的领域模型,我在使用Hibernate的时候,就已经使用了这个模式。不过在Martin Fowler写这本书的时候,Hibernate不知道存不存在,即使存在,也肯定很不成熟吧。通过O-R Mapping,我们建立了领域模型。比如说,对于PoEAA书里那个例子来说,建立了Contract, Product, RevenueRecognition三个领域对象。这些对象之间通过引用互相联系。同时把一部分验证、计算的逻辑放在了领域对象里。非常重要的一点是,这些领域对象,或者说这些类,可以存在继承或者关联关系,也拥有多态、封装的特性。可以说把OO发挥得淋漓尽致(不过发挥过头了也不好)。先贴一张图吧,就是书里的类图。
(附带说一下,CSDN里图片上传以后的那个预览窗口里那些文字不知道为什么还保留着,根本没有用。这个FCKeditor改得不够?)
三个领域对象互相关联。同时对不同的产品,使用了不同的计算策略(Strategy模式)。
底层的数据映射模式,可以使用Data Mapper,或者是Active Record(就是RoR里的那个),前者通过另外一个类似DAO的类来处理CRUD,而Active Record在领域对象内部处理持久化。Fowler的观点好像是不需要DAO了。
另外,对x血模型我也不是很清楚。有很多种说法,就是在JavaEye上看到的,robbin说的都不一样。最典型的就是关于贫血模型了(Anemic Domain Model),根据Fowler的说法,就是把所有的Domain Logic抽到Service 层以后,只有单纯的getter和setter的领域对象模型。而充血模型(Rich Domain Model),在底层那些POJO里就包含了一部分的逻辑。但把事务处理等工作交给了Service Layer。另外还有一个胀血模型(Bloated Domain Model),是一个反模式,把所有的工作都交给了领域对象,包括事务(因为事务总是经常要涉及到其他部分)。
还有一个失血模型,英文不知道,内容也不太清楚。这是我的理解。还有另外一种说法,同样没有失血模型的描述。也是在JavaEye上,robbin总结的帖子

  1. Anemic Domain Model: Service –> DAO –> Domain Object
  2. Rich Domain Model: Service –>Domain Object <–> DAO
  3. Bloated Domain Model: Domain Object <–> DAO

如果是这样的话,其实这和Fowler所定义的的贫血好像并不一样。脑子有点被搞糊涂了,呵呵。不过我想追究这么多,搞清楚概念也没什么用。重要的是自己去实践一下,哪个好用,易于扩展、易于维护。到底是不是纯粹的OO,并没有那么重要。

企业应用架构模式读书笔记(一)

最近懂得要写写读书笔记了。平时看了一些书,看过就忘,真是坏习惯。但记在本子上又不怎么看,觉得BLOG还算个好地方。以后都记在这里吧。当然,这本书的笔记还要为技术沙龙做一些准备。
模式先不说,先把那个例子解释清楚。英文版的看起来还是有点难度的,要看两遍才知道(其实就是因为那个例子是什么意思不知道)。不过这种经典书应该是多看几遍的吧?
先把数据库表列出来
Prouducts

int id
varchar name
varchar type

Contract

int id
int product_id
int revenue
date signon

RevenueRecognition

int
contract_id
int amount
date recognizeon

有三种产品,数据库、字处理软件、电子表格软件。IBM三件套是DB2, Lotus Word, Lotus123,微软三件套大家都很了解了,不过是SqlServer, Word, Excel。产品表很好理解了。合同表里有个产品的ID,也就是说,一份合同只是一份软件(虽然听起来比较ridiculous),还有收入(估计每一份都不一样价钱吧)。比较难理解的是收确认。因为有这么一项业务逻辑:字处理软件在签合同的当天就确认收入;而电子表格是在签合同当日确认三分之一,60天后确认三分之一,90天后确认三分之一,有点像分期付款吧;数据库也分三份,当天、30天、60天。每一次确认收入都要记录在数据库里,这样可以计算在某一日前有多少已确认的收入。
服务有两项。第一项是计算某一个合同在某一天前所确认的收入。其实这靠一条SQL语句就可以办到的。第二项是向数据库里插入某项合同的确认收入条目。比如Word就插入一条,DB2就插入三条。
顺便说一说第一个模式,也是最简单的模式:Transaction Script吧。这个是初学者常用的办法,如果再高级一点,可以用上个Command模式,让所有的Script都继承一个接口。所有的业务都在一个Script里完成,包括了业务逻辑、数据库操作、甚至是事务处理。这种模式,毋宁说是反模式,成也简单、败也简单。当然做一个DEMO、或者是以后不需要扩展的程序还是可以考虑这种模式的,呵呵。

体系结构zz

体系结构包括一组部件以及部件之间的联系。 体系结构风格有9大:1. 数据流系统,包括顺序批处理、管道和过滤器;2. 调用-返回系统,包括主程序和子程序、面向对象系统、层次结构;3. 独立部件,包括通信进程、事件隐式调用;4. 虚拟机,包括解释器、规则基系统;5. 以数据为中心的系统(库),包括数据库、超文本系统、黑板系统;6. 特殊领域风格;例如过程控制、模拟器;7. 特殊结构的风格,例如分布式处理、状态转移系统;8. 不同风格合成建立的异构结构;9. 最初始、最基本的主程序/子程序。
自1964年G. AMDAhl首次提出体系结构这个概念,人们对计算机系统开始有了统一而清晰的认识,为从此以后计算机系统的设计与开发奠定了良好的基础。近四十年来, 体系结构学科得到了长足的发展, 其内涵和外延得到了极大的丰富。特别是网络计算技术的发展,使得网络计算体系结构成为当今一种主要的计算模式结构。微电子技术的飞速发展使芯片级体系结构研究成为一个挑战性课题。体系结构与系统软件,应用软件,程序设计语言的紧密结合与相互作用也使今天的计算机与以往有很大的不同,并触发了大量的前沿技术、相关产品开发与基础研究课题。
在传统的程序设计领域中,人们使用流程图来表达系统的基本功能和实现的具体逻辑,但是,流程图实际上仅仅是源程序的图形化表示,无法给系统的分析和开发者提供更多的信息,所以没有在实际的系统开发过程中得到广泛的应用。随着软件系统的规模和复杂性的增加,对软件系统的整体结构(数据和控制的逻辑)进行分析和描述成为大型系统开发的一个不可缺少的重要部分,显然,使用流程图是无法达到这个目标的,我们必须使用新的方法和概念来对系统的整体结构进行把握。
系统分析实际上包括两个阶段的工作,首先是需求的 分析,也就是说,划分出系统和环境之间的界面,将所研究(或者是将要开发)的系统和周围的环境分离,这就是从使用者的观点,将整个系统作为一个整体来考 察。其次是系统的设计,根据系统的整体功能和数据,参考实际的物理系统或者类似的系统,设计实际运行的软件系统,这一步骤实际上就是体系结构的分析和确 定。
从系统工程的观点看来,任何复杂的系统都是由相对简单的,在当前所分析的系统层次是原始的基本元素(虽然在更进一步的分析中,这些元素可能具有非常复杂的 内部结构)组成的,这些基本元素之间存在复杂的相互作用。所以,软件系统的分析和设计的基本任务是:确立系统中的基本元素(完成系统的功能所必不可少的成 分);确定这些元素之间相互作用的方式(这就是系统的体系结构)。
我们在这里简单的介绍几种最基本的体系结构的范式,他们的特点、优点和缺点,最后给出实际开发中如何选择体系结构范式的一些指导性的意见。
一、基本的体系结构的范式
1. 管道和过滤器:
每个组件具有输入和输出的集合,从流中读出数据作为输入,产生输出数据的流。整个系统可以看成多个过滤器复合形成的数据处理组件。

过滤器A
过滤器B
过滤器C
过滤器A
过滤器D
管道
管道

特点:
l 过滤器之间是相互独立的(不能共享状态),其中一个过滤器的操作和行为不能影响另外过滤器的操作和行为,流的传送没有副作用。
l 过滤器对所输入流的来源和输出流的去向不关心,不需要知道流的来源和流的去向,来源和去向对于过滤器的数据处理没有任何影响。
l 过滤和流的传送可以是并发的,可以同时有多个流的传送存在于系统之中。
实例:
一个最著名的实例是unix的shell编程,多个对数据进行处理的程序(组件)通过管道联结起来,产生总和的效果;还有传统的编译器,源代码经过词法分析、语法分析、中间代码生成、目标代码生成等步骤生成输出的目标代码。
优点:
l 整个系统的功能是多个过滤器作用的总和,这样可以简化系统的分析和设计,可以经过需求的分析之后将整个系统作为一个过滤器处理,然后再逐步的细化成为多个相互连接的过滤器。
l 支持组件的重用,同一个过滤器可以多次出现在系统的不同位置。
l 易于维护和增强,过滤器可以被替换,可以增加新的过滤器到系统中而不改变原有的过滤器,不改变原来系统的基本功能。
l 本质上的并发性支持,这种体系结构由于本质上是与各个独立的过滤器的状态无关的,与并行的流的通过次序也是无关的,所以并发是一个基本的体系结构自然具有的特性。
缺点:
l 由于过滤器之间本质上是独立的,所以设计者必须独立考虑每一个过滤器的输入、处理和输出的过程,对于过滤器逻辑上的共同点和相互关系无法在设计中加以体现。
l 由于这种体系的批处理特性,所以不适合开发和用户交互的应用程序。
l 系统的多个处理流之间的共同特性无法提取、多个过滤器之间的共同特性也无法提取,所以增加了设计的复杂性。

2. 数据抽象和面向对象的体系

在这种体系中,数据和数据上的操作被封装成抽象数据类型或者对象。系统由大量的对象组成,在物理上,对象之间通过函数或者过程调用相互作用;在逻辑上,对象之间通过集成、复合等方式实现设计的复用。
对象D
对象B
对象A
对象E
对象C
对象调用
对象调用
对象调用
类A
类B
类C
类G
对象A
对象E
类F
复合
继承

物理结构 逻辑结构
特点:
面向对象系统分析和设计的资料已经太多,这里就不再详细说明了。
优点:
由于封装,实现了灵活性和扩充性,隐藏了实现的细节,提高代码的质量;
使用继承和多态、提高了软件的可重用性。
缺点:
最主要的缺点是,由于对象之间的交互是通过明确的对象函数调用进行的,所以当一个对象需要实现一个特定功能的时候,必须知道哪一个对象提供这种服务,这就降低了系统的灵活性。管道和过滤器模型不需要明确指明数据的来源和去向。
3. 事件驱动的体系
对象E
对象E
对象E
事件分发的总线
事件的创建
事件接收者的注册的创建
对象E
这是面向对象和数据抽象体系的一种变形,系统同样是由大量的对象组成的,但是对象之间的交互不是通过明确指明对象的函数或者过程调用进行的,相反,系统提 供事件的创建和发布的机制,对象产生事件,一个或者多个对象通过向系统注册关注这个事件并由此触发出相应的行为或者产生新的事件。

实例:
一个最著名的例子是GUI的模型,鼠标、键盘或者其他输入设备产生各种事件,窗口、程序或者其他对象有这些事件所触发,产生新的事件、进行数据处理或者其他操作。
优点:
用于函数和过程的调用调用不需要指明特定的对象,所以系统具有非常好的灵活性和扩展性,新的组件只需要向系统的事件处理部分注册就可以立刻加入系统中,同 样,老的组件也可以方便的从系统中删除。对于动态性要求特别高的系统,特别是如果需要在运行时对系统进行扩充,应该采用该结构。
缺点:
由于函数调用是通过事件发送进行的,所以,发出事件的对象不能确认是否有对象处理了这个事件、是否是期望的对象处理了这个事件、是否获得期望的结果,同样也无法控制事件发生的次序,系统的逻辑和时序的正确性必须通过复杂的时序逻辑和前后条件的断言加以保证。
4. 分层次的体系
将系统功能和组件分成不同的功能层次,一般而言,只有最上层的组件和功能可以被系统外的使用者访问,只有相邻的层次之间才能够有函数调用。
下面是一个基本的商务处理系统的层次结构:

用户界面层
事务逻辑层
核心层
实例:

显然,ISO的OSI(开放系统互连)参考模型是最著名的层次模型的例子,通过将开放系统的功能和组件划分成7个层次,定义清晰的(很多时候是过于复杂的)层次之间的接口,实现复杂的互操作性。
优点:
l 系统的开发和设计可以逐步的分层次的进行,从底层的简单的功能逐步建立高层的复杂和抽象的功能。
l 灵活性和扩展性,由于相邻层次之间通过清晰的接口交互,所以特定的层次可以被替换和增强,甚至可以增加新的层次。
缺点:
l 不是所有的系统都可以分解成为清楚的层次
l 划分清晰、逻辑上一致的层次是非常困难的(OSI的失败和TCP/IP的成功说明了这一点)
l 严格的层次调用结构会降低系统的性能。
5. 知识库体系
使用一个中心数据结构表示系统的当前状态,一组相互独立的组件在中心数据库上进行操作。如果组件负责对中心数据进行选择、处理,这种体系就是传统的数据库模型;如果中心数据结构自主的引发一系列的行为,则这种体系可以看成一个黑板模型。
中心数据库(知识库)
客户组件A
客户组件B
客户组件C
实例:

大量的传统数据库应用程序实际上就是这一体系的具体实例。在很多研究系统中,使用的基于知识库的黑板模型,实际上也是这种体系
优点:
以数据为中心的体系结构,可以自然的表示大量的数据和事务处理的逻辑,适合表达以数据为重新的应用程序。
缺点:
只有很少一部分简单的数据库存储应用可以完全采用这种体系结构表示,在大量实际的商业应用中,完成师傅处理和其他逻辑的应用程序必须采用其他的体系结构表达
6. 解释器体系

用户
如果应用程序的逻辑非常复杂,例如,AutoCAD的各种绘图指令,而且,用户可能以非常复杂的方式使用这个系统,一个较好的体系就是提供面向领域的一组指令(语言),系统解释这种语言,产生相应的行为,用户使用这种指令(语言)完成复杂的操作。


使用虚拟机语言描述的业务逻辑
虚拟机解释器
完成实际操作任务的基本指令
实际的问题领域
实例:

大量的开发工具、二次开发工具体现了这一思想:微软在其产品中大量使用的Visual BASic for Application,以及在AutoDESk产品中大量使用的AutoLisp语言,实际上就是给用户提供了一种面向领域的语言,然后核心解释执行这一语言的指令和指令序列。从而扩充产品的功能,方便用户按照自己的需要定制系统。
优点:
非常好的扩展性,用户可以实现对软件系统的二次开发
缺点:
软件开发复杂,特别是这种指令集的设计非常困难。
是否可以采用一种成熟的语言作为二次开发的基础(例如,基于Java)
二、实际系统开发的观点
在实际开发过程中,简单的判断某一个具体的应用应该采取何种体系结构是非常困难的。从目前的趋势来看:简单的管道、过滤器体系已经非常少见,面向对象的思 想已经融合在几乎所有的体系结构之中,而层次化的思想同样也被广泛使用,所以,一个基本的系统分析方法应该是功能和复杂性的分解,也就是说,从横向分解 (分模块、子系统),纵向分解中得到系统的基本组件(分类、分层次的功能和对象)。然后根据问题领域的特性选择系统的行为模式(具体的体系结构)。
三、目前最常见的体系结构
l 严格的层次结构(系统可以清楚的分解成为不同的功能层次,例如基本的图形库,提供不同层次的绘图接口)
这种体系结构适合于系统的功能相对简单,并且可以按照复杂的程度、抽象的程度、和硬件平台的关系等方面的特性加以分层的软件中。
l 事件驱动的体系:
对互操作性、特别是异构环境下的互操作性要求非常高的情况下,可以采用这种体系,当整个系统中存在大量的并发的,相互之间没有逻辑联系的组件的时候(例如操作系统或者图形用户界面)可以使用这种体系结构。现代软件技术中微软的COM和ISO的CORBA实际上都是这种体系结构的例子。
l 知识库的体系:
以大量数据为核心的系统采用这种体系,一些人工智能的应用同样需要这种体系结构,面向对象的知识库是这种体系结构的一个发展方向。将面向对象和层次化的思想引入知识库系统中,将得到一种非常强大的体系结构。
l 基于解释器的体系:
如果应用系统和用户的交互非常复杂,采用这种体系结构是最适合的方案,只有将系统的基本操作以指令的形式提供给用户,同时,提供一种简单明了的语法和基本 的数据操作、处理的功能,才能得到功能最强大、最灵活、具有最佳扩充新的应用系统;一个非常合适的例子是浏览器,一开始,浏览器只是简单的下载和显示 HTML的页面,随着用户对界面交互要求的发展,开发出javasCRipt,提供一种语言和基本的界面元素操纵的指令来得到扩充性和强大的功能。
绝大多数实际运行的系统都是上面几种体系结构的复合:在系统的某些部分采用一种体系结构而在其他的部分采用另外的体系,我们可以将复合几种基本体系结构的 系统称作复合体系结构。在实际的系统分析和设计中,可能首先将整个系统作为一个功能体进行分析和权衡,得到适宜的、最上层的体系结构,如果该体系结构中的 元素较为复杂,可以继续进行分解,得到某一部分的,局部的体系。分析的层次应该在可以清晰的使用简单的功能和界面描述表达结束,这样,可以将我们在分析和 设计的这一阶段将焦点集中在系统的总体结构上,而避免引入和所使用的语言、实现所具体需要的技术等实现的细节上。

体系结构风格分类zz

软件体系结构设计的一个核心问题是能否使用重复的体系结构模式,即能否达到体系结构级的软件重用。也就是说,能否在不同的软件系统中,使用同一体系结构。基于这个目的,学者们开始研究和实践软件体系结构的风格和类型问题。
软件体系结构风格是描述某一特定应用领域中系统组织方式的惯用模式。它反映了领域中众多系统所共有的结构和语义特性,并指导如何将各个模块和子系统有效地组织成一个完整的系统。按这种方式理解,软件体系结构风格定义了用于描述系统的术语表和一组指导构件系统的规则。
对软件体系结构风格的研究和实践促进了对设计的复用,一些经过实践证实的解决方案也可以可靠地用于解决新的问题。体系结构风格的不变部分使不同的系统可 以共享同一个实现代码。只要系统是使用常用的、规范的方法来组织,就可使别的设计者很容易地理解系统的体系结构。例如,如果某人把系统描述为”客户/服务 器”模式,则不必给出设计细节,我们立刻就会明白系统是如何组织和工作的。
下面是Garlan和Shaw对通用体系结构风格的分类:
(1)数据流风格:批处理序列;管道/过滤器
(2)调用/返回风格:主程序/子程序;面向对象风格;层次结构
(3)独立构件风格:进程通讯;事件系统
(4)虚拟机风格:解释器;基于规则的系统
(5)仓库风格:数据库系统;超文本系统;黑板系统
在上两篇文章中,我们介绍了软件体系结构的概念、现状及发展方向,读者可能会觉得”软件体系结构太抽象、太理论化,没有什么实际的东西”。然而,任何实践都必须接受理论的指导,如果抛弃理论基础,一味地追求实用,那也只能是囫囵吞枣。
软件体系结构设计的一个核心问题是能否使用重复的体系结构模式,即能否达到体系结构级的软件重用。也就是说,能否在不同的软件系统中,使用同一体系结构。基于这个目的,学者们开始研究和实践软件体系结构的风格和类型问题。
软件体系结构风格是描述某一特定应用领域中系统组织方式的惯用模式。它反映了领域中众多系统所共有的结构和语义特性,并指导如何将各个模块和子系统有效地组织成一个完整的系统。按这种方式理解,软件体系结构风格定义了用于描述系统的术语表和一组指导构件系统的规则。
对软件体系结构风格的研究和实践促进了对设计的复用,一些经过实践证实的解决方案也可以可靠地用于解决新的问题。体系结构风格的不变部分使不同的系统可 以共享同一个实现代码。只要系统是使用常用的、规范的方法来组织,就可使别的设计者很容易地理解系统的体系结构。例如,如果某人把系统描述为”客户/服务 器”模式,则不必给出设计细节,我们立刻就会明白系统是如何组织和工作的。
下面是Garlan和Shaw对通用体系结构风格的分类:
(1)数据流风格:批处理序列;管道/过滤器
(2)调用/返回风格:主程序/子程序;面向对象风格;层次结构
(3)独立构件风格:进程通讯;事件系统
(4)虚拟机风格:解释器;基于规则的系统
(5)仓库风格:数据库系统;超文本系统;黑板系统
限于篇幅,在本文中,我们将只介绍几种主要的和经典的体系结构风格和它们的优缺点。有关新出现的软件体系结构风格,将在后续文章中进行介绍。
一、C2风格
C2体系结构风格可以概括为:通过连接件绑定在一起的按照一组规则运作的并行构件网络。C2风格中的系统组织规则如下:
(1)系统中的构件和连接件都有一个顶部和一个底部;
(2)构件的顶部应连接到某连接件的底部,构件的底部则应连接到某连接件的顶部,而构件与构件之间的直接连接是不允许的;
(3)一个连接件可以和任意数目的其它构件和连接件连接;
(4)当两个连接件进行直接连接时,必须由其中一个的底部到另一个的顶部。
图1是C2风格的示意图。图中构件与连接件之间的连接体现了C2风格中构建系统的规则。
图1 C2风格的体系结构
C2风格是最常用的一种软件体系结构风格。从C2风格的组织规则和结构图中,我们可以得出,C2风格具有以下特点:
(1)系统中的构件可实现应用需求,并能将任意复杂度的功能封装在一起;
(2)所有构件之间的通讯是通过以连接件为中介的异步消息交换机制来实现的;
(3)构件相对独立,构件之间依赖性较少。系统中不存在某些构件将在同一地址空间内执行,或某些构件共享特定控制线程之类的相关性假设。
二、管道/过滤器风格
在管道/过滤器风格的软件体系结构中,每个构件都有一组输入和输出,构件读输入的数据流,经过内部处理,然后产生输出数据流。这个过程通常通过对输入流 的变换及增量计算来完成,所以在输入被完全消费之前,输出便产生了。因此,这里的构件被称为过滤器,这种风格的连接件就象是数据流传输的管道,将一个过滤 器的输出传到另一过滤器的输入。此风格特别重要的过滤器必须是独立的实体,它不能与其它的过滤器共享数据,而且一个过滤器不知道它上游和下游的标识。一个 管道/过滤器网络输出的正确性并不依赖于过滤器进行增量计算过程的顺序。
图2是管道/过滤器风格的示意图。一个典型的管道/ 过滤器体系结构的例子是以Unix shell编写的程序。Unix既提供一种符号,以连接各组成部分(Unix的进程),又提供某种进程运行时机制以实 现管道。另一个著名的例子是传统的编译器。传统的编译器一直被认为是一种管道系统,在该系统中,一个阶段(包括词法分析、语法分析、语义分析和代码生成) 的输出是另一个阶段的输入。
图2 管道/过滤器风格的体系结构
管道/过滤器风格的软件体系结构具有许多很好的特点:
(1)使得软构件具有良好的隐蔽性和高内聚、低耦合的特点;
(2)允许设计者将整个系统的输入/输出行为看成是多个过滤器的行为的简单合成;
(3)支持软件重用。重要提供适合在两个过滤器之间传送的数据,任何两个过滤器都可被连接起来;
(4)系统维护和增强系统性能简单。新的过滤器可以添加到现有系统中来;旧的可以被改进的过滤器替换掉;
(5)允许对一些如吞吐量、死锁等属性的分析;
(6)支持并行执行。每个过滤器是作为一个单独的任务完成,因此可与其它任务并行执行。
但是,这样的系统也存在着若干不利因素。
(1)通常导致进程成为批处理的结构。这是因为虽然过滤器可增量式地处理数据,但它们是独立的,所以设计者必须将每个过滤器看成一个完整的从输入到输出的转换。
(2)不适合处理交互的应用。当需要增量地显示改变时,这个问题尤为严重。
(3)因为在数据传输上没有通用的标准,每个过滤器都增加了解析和合成数据的工作,这样就导致了系统性能下降,并增加了编写过滤器的复杂性。
三、数据抽象和面向对象风格
抽象数据类型概念对软件系统有着重要作用,目前软件界已普遍转向使用面向对象系统。这种风格建立在数据抽象和面向对象的基础上,数据的表示方法和它们的 相应操作封装在一个抽象数据类型或对象中。这种风格的构件是对象,或者说是抽象数据类型的实例。对象是一种被称作管理者的构件,因为它负责保持资源的完整 性。对象是通过函数和过程的调用来交互的。
图3是数据抽象和面向对象风格的示意图。
图3 数据抽象和面向对象风格的体系结构
面向对象的系统有许多的优点,并早已为人所知:
(1)因为对象对其它对象隐藏它的表示,所以可以改变一个对象的表示,而不影响其它的对象。
(2)设计者可将一些数据存取操作的问题分解成一些交互的代理程序的集合。
但是,面向对象的系统也存在着某些问题:
(1)为了使一个对象和另一个对象通过过程调用等进行交互,必须知道对象的标识。只要一个对象的标识改变了,就必须修改所有其他明确调用它的对象。
(2)必须修改所有显式调用它的其它对象,并消除由此带来的一些副作用。例如,如果A使用了对象B,C也使用了对象B,那么,C对B的使用所造成的对A的影响可能是料想不到的。
四、基于事件的隐式调用风格
基于事件的隐式调用风格的思想是构件不直接调用一个过程,而是触发或广播一个或多个事件。系统中的其它构件中的过程在一个或多个事件中注册,当一个事件被触发,系统自动调用在这个事件中注册的所有过程,这样,一个事件的触发就导致了另一模块中的过程的调用。
从体系结构上说,这种风格的构件是一些模块,这些模块既可以是一些过程,又可以是一些事件的集合。过程可以用通用的方式调用,也可以在系统事件中注册一些过程,当发生这些事件时,过程被调用。
基于事件的隐式调用风格的主要特点是事件的触发者并不知道哪些构件会被这些事件影响。这样不能假定构件的处理顺序,甚至不知道哪些过程会被调用,因此,许多隐式调用的系统也包含显式调用作为构件交互的补充形式。
支持基于事件的隐式调用的应用系统很多。例如,在编程环境中用于集成各种工具,在数据库管理系统中确保数据的一致性约束,在用户界面系统中管理数据,以 及在编辑器中支持语法检查。例如在某系统中,编辑器和变量监视器可以登记相应Debugger的断点事件。当Debugger在断点处停下时,它声明该事 件,由系统自动调用处理程序,如编辑程序可以卷屏到断点,变量监视器刷新变量数值。而Debugger本身只声明事件,并不关心哪些过程会启动,也不关心 这些过程做什么处理。
隐式调用系统的主要优点有:
(1)为软件重用提供了强大的支持。当需要将一个构件加入现存系统中时,只需将它注册到系统的事件中。
(2)为改进系统带来了方便。当用一个构件代替另一个构件时,不会影响到其它构件的接口。
隐式调用系统的主要缺点有:
(1)构件放弃了对系统计算的控制。一个构件触发一个事件时,不能确定其它构件是否会响应它。而且即使它知道事件注册了哪些构件的构成,它也不能保证这些过程被 调用的顺序。
(2)数据交换的问题。有时数据可被一个事件传递,但另一些情况下,基于事件的系统必须依靠一个共享的仓库进行交互。在这些情况下,全局性能和资源管理便成了问题。
(3)既然过程的语义必须依赖于被触发事件的上下文约束,关于正确性的推理存在问题。
五、层次系统风格
层次系统组织成一个层次结构,每一层为上层服务,并作为下层客户。在一些层次系统中,除了一些精心挑选的输出函数外,内部的层只对相邻的层可见。这样的 系统中构件在一些层实现了虚拟机(在另一些层次系统中层是部分不透明的)。连接件通过决定层间如何交互的协议来定义,拓扑约束包括对相邻层间交互的约束。
这种风格支持基于可增加抽象层的设计。这样,允许将一个复杂问题分解成一个增量步骤序列的实现。由于每一层最多只影响两层,同时只要给相邻层提供相同的接口,允许每层用不同的方法实现,同样为软件重用提供了强大的支持。
图4是层次系统风格的示意图。层次系统最广泛的应用是分层通信协议。在这一应用领域中,每一层提供一个抽象的功能,作为上层通信的基础。较低的层次定义低层的交互,最低层通常只定义硬件物理连接。
图4 层次系统风格的体系结构
层次系统有许多可取的属性:
(1)支持基于抽象程度递增的系统设计,使设计者可以把一个复杂系统按递增的步骤进行分解;
(2)支持功能增强,因为每一层至多和相邻的上下层交互,因此功能的改变最多影响相邻的上下层;
(3)支持重用。只要提供的服务接口定义不变,同一层的不同实现可以交换使用。这样,就可以定义一组标准的接口,而允许各种不同的实现方法。
但是,层次系统也有其不足之处:
(1)并不是每个系统都可以很容易地划分为分层的模式,甚至即使一个系统的逻辑结构是层次化的,出于对系统性能的考虑,系统设计师不得不把一些低级或高级的功能综合起来;
(2)很难找到一个合适的、正确的层次抽象方法。
六、仓库风格
在仓库风格中,有两种不同的构件:中央数据结构说明当前状态,独立构件在中央数据存贮上执行,仓库与外构件间的相互作用在系统中会有大的变化。
控制原则的选取产生两个主要的子类。若输入流中某类时间触发进程执行的选择,则仓库是一传统型数据库;另一方面,若中央数据结构的当前状态触发进程执行的选择,则仓库是一黑板系统。
图4是黑板系统的组成。黑板系统的传统应用是信号处理领域,如语音和模式识别。另一应用是松耦合代理数据共享存取。
图4 黑板系统的组成
我们从图4中可以看出,黑板系统主要由三部分组成:
(1)知识源。知识源中包含独立的、与应用程序相关的知识,知识源之间不直接进行通讯,它们之间的交互只通过黑板来完成。
(2)黑板数据结构。黑板数据是按照与应用程序相关的层次来组织的解决问题的数据,知识源通过不断地改变黑板数据来解决问题。
(3)控制。控制完全由黑板的状态驱动,黑板状态的改变决定使用的特定知识。
七、结束语
软件体系结构风格为大粒度的软件重用提供了可能。然而,对于应用体系结构风格来说,由于视点的不同,系统设计师有很大的选择空间。要为系统选择或设计某一个体系结构风格,必须根据特定项目的具体特点,进行分析比较后再确定,体系结构风格的使用几乎完全是特化的。
在本文中,我们只讲述了”纯”的体系结构。但是,从上面的介绍中,我们知道,不同的结构有不同的处理能力的强项和弱点,一个系统的体系结构应该根据实际 需要进行选择,以解决实际问题。事实上,也存在一些系统,它们是由这些纯体系结构组合而成,即采用了异构软件体系结构。关于软件体系结构的异构问题,我们 将在后续文章中进行介绍